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1 FUNDAMENTAL CONCEPTS AND TOOLS
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1.1 INTRODUCTION
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Some literature

These lectures are mainly based on

◮ J. Møller and R.P. Waagepetersen (2004). Statistical Inference and
Simulation for Spatial Point Processes. Chapman and Hall/CRC,
Boca Raton.

◮ J. Møller and R.P. Waagepetersen (2007). Modern statistics for
spatial point processes (with discussion). Scandinavian Journal of
Statistics, 34, 643-711.

◮ J. Møller and R.P. Waagepetersen (2017). Some recent
developments in statistics for spatial point patterns. Annual Review
of Statistics and Its Applications, 4, 317-342.
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Some other literature

See also the monographs

◮ P.J. Diggle (2013). Statistical Analysis of Spatial and
Spatio-Temporal Point Patterns. Chapman and Hall/CRC, London.
(Third edition.)

◮ J. Illian, A. Penttinen, H. Stoyan and D. Stoyan (2008). Statistical
Analysis and Modelling of Spatial Point Patterns. John Wiley and
Sons, Chichester.

◮ A. Baddeley, E. Rubak and R. Turner (2015). Spatial Point
Patterns: Methodology and Applications with R. Chapman and
Hall/CRC Press, London.

For references to others, see above or look at my homepage:
http://people.math.aau.dk/∼jm/
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Point processes in R

◮ R-package for dealing with spatial point processes: spatstat

◮ Homepage: www.spatstat.org
Here you can find manuals, news, etc.

◮ Many algorithms implemented for
◮ parameter estimation
◮ simulation
◮ model checking

◮ R codes related to these lectures can be downloaded:
//people.math.aau.dk/∼jm/name
with name = Rcode1Poisson.R, Rcode2SummaryStat.R,
Rcode3Cox.R, Rcode4Markov.R, or Rcode5Estimation.R

6 / 124



1.2 DATA EXAMPLES AND STATISTICAL INFERENCE
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Data example 1: Swedish pines data

◮ Black rectangle: The observation window, 9.6× 10 meters.

◮ Black dots: positions of pine saplings (young trees) in a Swedish
forest (a point pattern).

◮ Note that a point pattern dataset consists of both the observation
window and the point pattern.
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Data example 2: Chorley-Ribble data

◮ Black boundary: The Chorley-Ribble region in Britain (observation
window)

◮ Red dots: Cases of larynx cancer (a point pattern)

◮ Green plusses: Cases of lung cancer (another point pattern)

◮ Blue plus/circle: An old incinerator
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Data example 2: Chorley-Ribble data

◮ Note that this dataset consists of
◮ the observation window
◮ two point patterns
◮ covariate information (any other potentially relevant information, in

this case the position of the incinerator)

◮ Question: Does the incinerator cause larynx cancer, i.e. is there a
higher risk of cancer close to the incinerator?

◮ Statistical analysis is complicated by the spatial aspects of the data:
There is a different amount of people that can get cancer, due to
the (unknown!) non-constant population density. The irregular
shape of the observation window may complicate ”things”.
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Data example 3: Murchison data

◮ Green area: An area of greenstone (the observation window).

◮ Red lines: Faults in the ground (covariate information).

◮ Blue dots: Gold deposits (the point pattern).

◮ Question: Are the faults (easily observable) a good indicator of
where to dig for gold?

11 / 124



Other examples of data

◮ One-dimensional point patterns:
◮ Times of earthquakes in some region
◮ Times of market crashes
◮ Times of production failures in a factory
◮ Positions of car accidents on a highway during a month

◮ Two-dimensional point patterns:
◮ Positions of restaurants in a city
◮ Positions of farms with mad cow disease in some region
◮ Positions of broken wires in an electrical network

◮ Three-dimensional point patterns:
◮ Positions of stars or galaxies in the visible part of the universe
◮ Positions of copper deposits underground
◮ Times and (2D-)positions of earthquakes

Note: In practice, the observation windows are typically bounded subsets
of Rd . Some techniques are available specifically for point patterns on
the time line (directional), but in these lectures we focus on models and
methods useful for any dimension (not directional if d ≥ 2).
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Yet another example of a 3D point pattern dataset
Locations of 623 pyramidal cells in a 508× 138× 320 µm3 large region
(Brodmann area 4 of the grey matter of a human brain) :
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Minicolumn hypothesis (Mountcastle, 1957): cells developed in the
centre of the brain and traversed radial paths to the pial surface → a
columnar arrangement perpendicular to the pial surface of the brain, i.e.,
parallel to the z-axis.
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Statistical inference for spatial point patterns

◮ Objective is to infer structure in spatial distribution of points:
◮ interaction between points: regularity or clustering (‘random’)
◮ inhomogeneity linked to covariates (‘systematic’)
◮ to investigate an hypothesis (e.g. the minicolumn hypothesis)

Clustered Regular Inhomogeneous

◮ Briefly, spatial point processes are stochastic models for spatial point
patterns. Such models and various statistical tolls have been
developed depending on the problem and the type of spatial point
pattern dataset.
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1.3 SPATIAL POINT PROCESSES AND SIMPLE MODELS
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What is a spatial point process?

We consider only point patterns ⊂ R
d which are locally finite.

◮ Definition: A spatial point process X is a locally finite random
subset of Rd .

◮ Equivalently we have a counting measure N(A) := #X ∩ A for
(Borel) sets A ⊂ R

d .

◮ Measurability of X means that N(A) is a random variable for any
bounded (Borel) set A ⊂ R

d .

◮ Fact: the distribution of X is uniquely determined by the
void probabilities

v(A) = P(N(A) = 0), A ⊂ R
d compact.

(Extensions to other settings including non-simple point processes,
marked point processes, multiple point processes, and lattice processes
are rather straightforward.)
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Simple example of point process: Binomial point process

◮ Let f be a probability density function (pdf) on a (Borel) set

S ⊆ R
d . Then X is a binomial point process with n points in S and

pdf f if X consists of n iid points, each with pdf f .

(Example with S = [0, 1]× [0, 1], n = 100 and f (x) = 1.)

◮ ‘Binomial’ since the number of points falling in a (Borel) subset
A ⊆ S is binomially distributed b(n, p) with p =

∫

A
f (x) dx .
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Fundamental example: The Poisson process

◮ Assume µ locally finite measure on a given (Borel) set S ⊆ R
d s.t.

µ(B) =
∫

B
ρ(u) du for all (Borel) sets B ⊆ S .

◮ Def: X is a Poisson process on S with
intensity measure µ and intensity (function) ρ
if for any bounded region B with µ(B) > 0:

1. N(B) ∼ po(µ(B)).
2. Given N(B), points in X ∩ B i.i.d. with density ∝ ρ(u), u ∈ B (i.e. a

binomial point process).

◮ Examples on S = [0, 1]× [0, 1]:

Homogeneous: ρ = 100 Inhomogeneous: ρ(x , y) = 200x
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Properties of the Poisson process

Using the definition and void probabilities it is fairly easy to show

◮ the existence of the Poisson process;

◮ that the class of Poisson processes is closed under
◮ independent thinning,
◮ independent super-positioning,
◮ independent random shifts.

It is easy to simulate a Poisson process X within a bounded set B ⊆ S if
supB ρ ≤ ρmax:

◮ Straightforward to generate homogeneous Poisson process Xmax on
B with intensity ρmax.

◮ Obtain X ∩ B ⊆ Xmax by independent thinning, with retention
probability ρ(x)/ρmax for each x ∈ Xmax.
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Poisson processes in R

Have a look at some of the things we can do with Poisson processes in R
using the spatstat package... (Rcode1Poisson.R)
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Two fundamental properties: Stationarity and isotropy

◮ X on R
d is stationary if its distribution is invariant under

translations:

X ∼ {u + s|u ∈ X} for any s ∈ R
d .

◮ X on R
d is isotropic if its distribution is invariant under rotations

around the origin:
X ∼ {Ru|u ∈ X}

for any d × d rotation matrix R .

◮ A Poisson process on R
d with constant intensity ρ is both stationary

and isotropic.

21 / 124



Overview of the rest of the lectures

◮ Summary statistics – useful tools for preliminary analysis and model
checking.

◮ Cox processes – models for aggregated/clustered point patterns.

◮ Markov processes – mostly models for regular/inhibitive point
patterns.

◮ Simulation of point processes, including MCMC based simulation.

◮ Inference – mainly estimation of parameters.
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1.3 (FUNCTIONAL) SUMMARY STATISTICS
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Summary statistics

◮ Summary statistics are numbers or functions describing
characteristics of point processes, for example:

◮ The mean number of points in a set B ⊆ R
d .

◮ The covariance of the number of points in sets A and B.
◮ The mean number of further points within distance r > 0 of an

‘arbitrary point of the process’.
◮ The probability that there is no further point within distance R of an

‘arbitrary point of the process’.

◮ They are useful for:
◮ Preliminary analysis.
◮ Model fitting (minimum contrast estimation).
◮ Model checking.

Another useful tool is ’residuals’, see
Baddeley, Turner, M. and Hazelton (2005),
Baddeley, M. and Pakes (2008),
Baddeley, Rubak and M. (2011).
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Notation and conventions

◮ Whenever we consider sets S ,B, . . . ⊆ R
d , they are assumed to be

Borel sets. (In practice: don’t worry!)

◮ For a point process X on S ⊆ R
d and a subset B ⊆ S ,

◮ XB = X ∩ B is the restriction of X to B;
◮ for a finite set x ⊂ R

d , n(x) is the number of points in x;
◮ so N(B) = n(XB).
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First order moments
◮ Intensity measure µ:

µ(A) = EN(A), A ⊆ R
d .

◮ Intensity function ρ:

µ(A) =

∫

A

ρ(u) du.

◮ Infinitesimal interpretation: when A very small, N(A) ≈ binary
variable (presence or absence of point in A). Hence if A has
area/volume/... |A| = du,

ρ(u) du ≈ EN(A) ≈ P(X has a point in A).

◮ Note: if ρ(u) is constant, we say X is homogeneous;
otherwise X is inhomogeneous.
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Non-parametric estimation of ρ (homogeneous case)

Let W ⊂ R
d with 0 < |W | < ∞. Suppose XW is homogeneous and a

realization is observed.
Natural estimate of ρ:

ρ̂ = n(XW )/|W |
because

◮ Eρ̂ = ρ;

◮ in case of a homogeneous Poisson process, ρ̂ is the MLE.
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Non-parametric estimation of ρ (inhomogeneous case)

Let W ⊂ R
d with 0 < |W | < ∞. Suppose XW is inhomogeneous and a

realization is observed.
Non-parametric estimate of ρ(u) (Diggle, 1985):

ρ̂(u) =
∑

v∈XW

k(u − v)/cW (v), u ∈ W ,

where

◮ k is kernel (i.e. a pdf),

◮ cW (v) =
∫

W
k(u − v) du is an edge-correction factor.

Then
∫

W
ρ̂(u) du is an unbiased estimate of µ(W ).
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Practical issues in kernel estimation

◮ Typically a kernel depends on a band-width b > 0.

◮ For example, an isotropic mean-zero normal density function is a
kernel with band-width b = σ:

k(u) =
1

(
√
2πσ)d

exp

(

−‖u‖2
2σ2

)

.

◮ In general,
kb(x) = k1(x/b)/b

d

where k1 is a given pdf.

◮ In practice, the shape of k is less important than b.

◮ Sensitive to the choice of ‘band-width’...
(if covariate information is available, a parametric model for ρ may
be preferred).
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Examples when using a normal kernel

  redwood   σ = 0.01

0
10

00
20

00

  σ = 0.1
50

10
0

  σ = 1

61
.5

62
.5
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Second order moments
◮ Second order factorial moment measure α(2):

α(2)(A× B) = E

6=
∑

u,v∈X

1[u ∈ A, v ∈ B], A,B ⊆ R
d .

◮ Second order product density/second order intensity ρ(2):

α(2)(A × B) =

∫

A

∫

B

ρ(2)(u, v)du dv .

◮ Infinitesimal interpretation of ρ(2): For u ∈ A and v ∈ B with
|A| = du, |B| = dv , and A ∩ B = ∅,

ρ(2)(u, v) du dv ≈ P(X has a point in each of A and B).

◮ Note that covariances can be expressed using these:

Cov[N(A),N(B)] = α(2)(A× B) + µ(A ∩ B)− µ(A)µ(B).
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Second order product density for Poisson process

◮ If X is a Poisson process with intensity function ρ, then

ρ(2)(u, v) = ρ(u)ρ(v).

◮ Proof: The so-called extended Slivnyak-Mecke formula (omitted
here).

32 / 124



Pair correlation function (pcf)

The pcf is defined by

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)
≈ P(X has a point in each of A and B)

P(X has a point in A)P(X has a point in B)

(here u ∈ A and B ∈ v are infinitesimally small sets, and a/0 := 0 for
a ∈ R).

◮ Interpretation of pcf:
◮ Poisson process: g(u, v) = 1.
◮ If g(u, v) > 1 when u and v are not ”too far”, then realizations tend

to be more aggregated/clustered than for a Poisson process.
◮ If g(u, v) < 1 when u and v are not ”too far”, then realizations tend

to be more regular than for a Poisson process.

◮ If X is stationary, then g(u, v) = g(u− v), and if X is also isotropic,
then g(u, v) = g(r) where r = ‖u − v‖.

◮ Non-parametric kernel estimation can be used
(sensitive to choice of band width).
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Example: Norwegian spruces in a 56× 38 m region

  Spruces (unmarked)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

g

r (metres)

ĝRipley(r)
ĝTrans(r)
gPois(r)

34 / 124



ρ, ρ(2) and g under thinning
◮ If Xthin is a thinned process obtained from X with retention

probability p(u), then using an obvious notation,
1. ρthin(u) = p(u)ρ(u),

2. ρ
(2)
thin(u, v) = p(u)p(v)ρ(2)(u, v),

3. gthin(u, v) = g(u, v).

◮ Proof (sketch): We can let

Xthin = {u ∈ X : R(u) ≤ p(u)}

where for all u ∈ R
d the R(u) are independent uniform random

variables on [0, 1] which are independent on X.

Then consider µthin and α
(2)
thin, where we first condition on the R(u)

and next use that for non-negative (Borel) functions h1 and h2,

E

∑

u∈X

h1(u) =

∫

h1(u)ρ(u) du,

E

6=
∑

u,v∈X

h2(u, v) =

∫ ∫

h2(u, v)ρ
(2)(u, v) du dv .
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K (Ripley, 1977) and L-function (Besag, 1977)
◮ Assume X stationary with intensity ρ > 0 and pair correlation

function g(u, v) = g(u − v).

◮ Ripley’s K-function: K (r) =
∫

‖u‖≤r
g(u)du, or if 0 < |A| < ∞,

K (r) = E
1

ρ2|A|
∑

u∈XA

∑

v∈X\{u}

1[‖u − v‖ ≤ r ], r > 0.

◮ Interpretation: ρK (r) is the expected number of further points
within distance r of an arbitrary point of X .

◮ Besag’s L-function (variance stabilizing transformation):

L(r) = (K (r)/ωd )
1/d

where ωd = πd/2/Γ(1 + d/2) (volume of the unit ball in R
d).

◮ More convenient to plot L(r)− r than K (r):
◮ Poisson process: L(r)− r = 0
◮ If L(r)− r > 0 (or if L(r)− r < 0) whenever r > 0 is not ”too

large”: more clustering (or regularity) than for a Poisson process.

36 / 124



Example: Norwegian spruces in a 56× 38 m region
  Spruces (unmarked)

0 2 4 6 8

0
50

10
0

20
0

K

r (metres)

K̂ iso(r)
K̂t rans(r)
K̂bord(r)
Kpois(r)

0 2 4 6 8

0
2

4
6

8

L

0 2 4 6 8

−
1.

0
−

0.
6

−
0.

2

L(r)−r
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Inhomogeneous K and L-functions (Baddeley, M &

Waagepetersen, 2000)

Def: X is second-order intensity reweighted stationary (s.o.i.r.s.) if
g(u, v) = g(u − v). Then we still define
K (r) =

∫

‖u‖≤r
g(u) du and L(r) = (K (r)/ωd )

1/d .

◮ s.o.i.r.s. is satisfied for any Poisson process, many Cox process
models (see later), any stationary point process, and any
independent thinning of any stationary point process.

◮ Poisson case: L(r)− r = 0.

◮ If X is s.o.i.r.s. and Wu = {u + v : v ∈ W }, then

K̂ (r) =

6=
∑

u,v∈x

1[‖v − u‖ ≤ r ]

ρ(u)ρ(v)|W ∩Wv−u |

is an unbiased estimate of K (r).

◮ In practice an estimate for ρ(u) is plugged in.
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Summary statistics based on interpoint distances

Assume X is stationary with constant intensity ρ.

◮ Empty space function:

F (r) = P(d(0,X) ≤ r) = P(X ∩ b(0, r) 6= ∅), r > 0,

i.e. the distribution function for the length between a fixed location
to its nearest point in X.

◮ Nearest-neighbour distribution function:

G(r) = E
1

ρ|A|
∑

u∈X∩A

1[d(u,X \ {u}) ≤ r ], r > 0,

which can be regarded as the distribution function for the length
from a ‘typical’ point in X to its nearest neighbour in X.

◮ Poisson process: F (r) = G(r) = 1− exp(−ρωd r
d ).
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J-function

◮ Often J(r) = (1− G(r))/(1 − F (r)) is considered.

◮ Interpretation of J(r):
◮ Poisson process: J(r) = 1.
◮ If J(r) < 1 (or if J(r) > 1), then realizations tend to be more

clustered (or regular) than for a Poisson process.

◮ Extension to the case of s.o.i.r.s.: see Van Lieshout (2011).
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Non-parametric estimation of F and G

◮ Minus sampling: use only W⊖r = {u ∈ W : b(u, r) ⊆ W }.
◮ Estimation of F (I is a systematic grid of fixed locations):

F̂ (r) =
1

n(I ∩W⊖r )

∑

u∈I∩W⊖r

1[d(u,X) ≤ r ].

◮ Estimation of G :

Ĝ(r) =
1

ρ|W⊖r |
∑

u∈X∩W⊖r

1[d(u,X \ {u}) ≤ r ].

◮ Estimation of J:

Ĵ(r) = (1 − Ĝ(r))/(1 − F̂ (r)).
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Example: Norwegian spruces in a 56× 38 m region
  Spruces (unmarked)

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

F

r (metres)

F̂km(r)
F̂bord(r)
F̂cs(r)
Fpois(r)

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

G

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

0.0 0.5 1.0 1.5 2.0 2.5
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Model check using summary statistics: envelopes

◮ Model check: compare summary statistic T (r) from model with
estimate T̂ (r) obtained from data.

◮ If T (r) is intractable, it may be approximated using simulations:
simulate n new point patterns, calculate estimates T̂1(r), . . . , T̂n(r),
and consider

T (r) ≈ T̄ (r) =
1

n

∑

i=1

Ti(r).

◮ Example of a pointwise envelope: if T̂(1)(r), . . . , T̂(n)(r) are the
ordered statistics, then e.g.

P(T̂ (r) ≤ T̂(1)(r) or T̂ (r) ≥ T̂(n)(r)) = 2/(n+ 1)

(if no ties), i.e. for n = 39, we have 2/(n+ 1) = 0.05, and so for
each r > 0 an approximate 95% envelope is given by
[T̂(1)(r), T̂(n)(r))].
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Example: 134 Norwegian spruces in a 56× 38 m region

◮ L(r) − r with (approximate) 95% envelope (i.e. n = 39) under a
stationary Poisson process with intensity 134/(56× 38):

  Spruces (unmarked)

0 2 4 6 8

−
1.

0
−

0.
5

0.
0

0.
5

44 / 124



Pointwise and global envelopes

◮ It is only for each fixed value of r that we have constructed an
(approximate) 95% envelope. Hence a pointwise envelope.

◮ If ”rejection” means ”being outside the envelope” and we consider
several values of r , then we need a much wider
95% envelope in order to obtain a test of level 5%.

◮ Solution (more technical): Myllymäki et al. (2016) and Mrkvička et
al. (2017) consider a so-called global rank envelope test providing a
correct p-value for the fitted model being ”true” and with a
graphical interpretation in form of a global (rank) envelope. This
means that for a 95% global envelope, with (approximate
probability) 0.95 we expect T̂ (r) to be within the envelope for all of
several r values (typically a discretization of an interval).

◮ Details: see their paper.

◮ An R library for Global Envelope Tests:
https://github.com/myllym/GET
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Summary statistics in R

◮ The spatstat package contains many functions for estimating
summary statistics for point patterns.

◮ Have a look at some of them... (Rcode2SummaryStat.R)
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Example: Analysing the Chorley-Ribble data

Recall this dataset (Slide 9) (red dots: larynx cancer cases; green pluses:
lung cancer cases; blue plus/circle: incinerator)

How do the larynx cancer cases depend on the distance λincin(u) (u in
the Chorley-Ripley region) to the incinerator, when accounting for the
population density?
Problem: Do not know the population density.
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Population density

Idea: Use instead that a non-parametric estimate of the intensity
function of lung cancer cases (denoted λpop) may be in good agreement
with the population density – see the following map.
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Statistical analysis

Summary of the results obtained by a group of my third year students
(for the Master’s degree), see //people.math.aau.dk/∼jm/SS1.html:

◮ A homogeneous Poisson process was obviously not fitting well.

◮ An appropriate band-width σ = 1, 1.5, 2 for the non-parametric
estimate λpop was chosen
(σ = 1.5 was first preferred, but at the very end σ = 1 was chosen
as it provided a better fit of the model).

◮ Fitted 3 models for the log-intensity of larynx cancer cases:
◮ α+ βλpop + γλincin

◮ α+ β log λpop + γλincin

◮ α+ β log λpop + log γλincin

◮ Considering functional summary statistics together with envelopes,
the last model with σ = 1 was providing the best fit; then β̂ = 1.3
and γ̂ = −0.3.

◮ So, when accounting for the population density, the intensity of
larynx cancer cases is estimated to be a decreasing function of the
distance to the incinerator.
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2 TWO MAIN CLASSES OF SPATIAL POINT PROCESS MODELS:
COX AND MARKOV POINT PROCESSES
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2.1 COX PROCESSES
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Motivation for Cox processes

◮ Suppose we want to model a point pattern of trees given that we
know the soil quality. May try with an inhomogeneous Poisson
process.

◮ For example, if the soil quality is given by h(x , y) ∈ R, then we
could try with a Poisson process with intensity
ρ(x , y) = exp(α+ βh(x , y)) (where α, β are unknown parameters).

◮ But what if we don’t know the soil type – or other covariates of
importance?

◮ For the Chorley-Ribble dataset, if also we want to model the lung
cancer cases, we miss covariate information.

◮ In analogy with random effect models, we may introduce a Poisson
process with a random intensity – a Cox process
(Cox, 1955).
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Definition of a Cox process

◮ Random intensity function: Z = {Z (u) : u ∈ S} is a locally
integrable non-negative random field on S ⊆ R

d .

◮ Cox process: X is a Cox process driven by the random intensity
function Z (on S) if, conditional on Z = z , X is a Poisson process
with intensity function z .
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Summary statistics for Cox processes

◮ Intensity, product density, and pair correlation function:

ρ(u) = EZ (u), ρ(2)(u, v) = E[Z (u)Z (v)]

g(u, v) =
E[Z (u)Z (v)]

EZ (u)EZ (v)

◮ In general for Cox processes (apart from a few exceptions),
g(u, v) > 1 for all u, v ∈ S , i.e. models for aggregation/clustering.

◮ Overdispersion for counts in all Cox processes:

V[N(A)] ≥ E[N(A)]

This also indicates aggregation/clustering.

◮ F ,G , J hard to obtain for general Cox processes, but expressions are
available for specific Cox process models.
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Simulation of Cox processes

◮ Two-step procedure:
◮ Simulate Z .
◮ Simulate X given Z = z as an inhomogeneous Poisson process with

intensity z .

◮ Need to find some way of simulating Z – this depends on the choice
of stochastic model for Z .
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Density and void probability of Cox processes

◮ Restricted to a bounded region W , the density is

f (x) = E

[

exp

(

|W | −
∫

W

Z (u)du

)

∏

u∈X

Z (u)

]

w.r.t. to the unit-rate Poisson process (more about densities later).

◮ Void probability:

P(X ∩ B = ∅) = E exp

(

−
∫

B

Z (u)du

)

.

◮ Neither one can usually be calculated exactly!
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Example: Neyman-Scott (1958) process (used in

cosmology, ecology, foresty,...)
◮ Centre process: C is a stat. Poisson process with intensity κ.
◮ Random intensity: Z (u) = α

∑

c∈C k(u − c) for α > 0 and some
kernel k . So X is stat. with intensity ακ.

◮ Examples:
◮ Matérn (1960) cluster process: k(u) = 1[‖u‖ ≤ r ]/(ωd r

d).

κ = 10, r = 0.05, α = 5 κ = 10, r = 0.1, α = 5

◮ (Modified) Thomas process: k is the density of Nd(0, σ
2I ).
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Pair correlation function and simulation for a

Neyman-Scott process

◮ Pair correlation function:

g(u) = 1 +

∫

k(v)k(u + v)dv/κ

(special case of result for SNCPs; see later).

◮ Simulation algorithm:
◮ Simulate centre process C as a homogeneous Poisson process with

intensity κ.
◮ For each c ∈ C , simulate its cluster: Simulate the number of points

in the cluster, N(Xc) ∼ po(α); and simulate each point xc,i ∈ Xc

using the density k(· − c).
◮ Superpose the clusters X = ∪c∈CXc .

◮ Note:
◮ the centres c ∈ C are not part of X;
◮ beware of edge-effects (M, 2003).
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Example: Shot-noise Cox processes (M, 2003)

◮ A shot-noise Cox process (SNCP) has random intensity function

Z (u) =
∑

(c,γ)∈Φ

γk(c , u)

where k(c , ·) is a kernel (pdf) and Φ ∼ Poisson(Rd×]0,∞[, ζ).

◮ NB: may be non-stationary.

◮ A Neyman-Scott process is the special case where
k(c , u) = k(u − c),
all γ = α are fixed to be a number α > 0,
Φ is essentially given by C ,
and dζ(c , γ) is essentially given by κdc .
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Pair correlation function and simulation for a SNCP

◮ If X is a SNCP, then

g(u, v) = 1 +
β(u, v)

ρ(u)ρ(v)
,

where

β(u, v) =

∫ ∫

γ2k(c , u)k(c , v)ζ(c , γ)dcdγ.

◮ Proof: Use the so-called Slivnyak-Mecke (omitted here).

◮ How would you simulate a SNCP?
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Special case of SNCP: Shot-noise G Cox processes (Brix,

1999)

◮ A shot-noise G Cox process has

ζ(c , γ) = βγ−α−1 exp(−τγ)/Γ(1− α),

where β > 0, α < 1, τ > 0.

◮ Stationary if k(c , u) = k(u − c). Then the pair correlation function
is

g(u) = 1 +
1− α

βτα

∫

k(v)k(u + v)dv .

NB: Of the same form as a for a Neyman-Scott process.
This illustrates that different point process models can share the
same first and second order moment properties!
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Neyman-Scott processes in R

◮ Neymann-Scott processes are implemented in the Spatstat
package.

◮ rNeymanScott() is used to simulate the general case.

◮ rMatClust() and rThomas() can be used for the special cases of
the Matérn cluster processes and Thomas processes.

◮ The shot-noise Cox processes are not implemented
(as far as I know).

◮ Have a look at some code... (Rcode3Cox.R).
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Log Gaussian Cox process (M, Syversveen &

Waagepetersen, 1998)

◮ Gaussian field: Y = {Y (s) : s ∈ R
d} is a Gaussian field if all finite

linear combinations of Y (u1), . . . ,Y (un) are normally distributed.

◮ A log Gaussian Cox process (LGCP) is a Cox process driven by
Z = exp(Y).

◮ The distribution of a LGCP is completely determined by the mean
and covariance of the Gaussian field:

m(u) = EY (u) and c(u, v) = Cov(Y (u),Y (v)).

◮ Mean function m(u):
◮ Constant mean: no knowledge about underlying tendencies.
◮ Non-constant mean: covariate information (e.g. soil quality when

modelling the locations of trees).
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Example: Power exponential covariance function

◮ The power exponential covariance function is given by

c(u, v) = σ2 exp
(

−‖u − v‖δ/α
)

,

with parameters σ, α > 0, 0 ≤ δ ≤ 2.

◮ δ = 1:
◮ The exponential cov. fct.
◮ Has ”jagged” realizations.

◮ δ = 2:
◮ The Gaussian cov. fct.
◮ Has very smooth

realizations.
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Summary statistics and simulation

◮ The intensity and pair correlation function are given by

ρ(u) = exp (m(u) + c(u, u)/2) , g(u, v) = exp(c(u, v)).

◮ Proof: Use Laplace transforms.

◮ NB: (ρ, g) ↔ (m, c).

◮ Simulation of ZW = {Z (s) : s ∈ W } (W ⊂ R
d bounded) is

somewhat tricky – we can approximate ZW on a grid, and simulate
this as a multivariate normal variable.
Small grids: Choleski decomposition.
Large rectangular grids: extend to a larger rectangular grid wrapped
on a torus and use FFT (see M, Syversveen & Waagepetersen,
1998).

◮ Given a realization XW = xW of the LGCP within W (bounded),
conditional simulation of ZW approximated on a grid can be done
using INLA (Rue, Martino & Chopin, 2009).
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Log Gaussian Cox in R

◮ LGCPs are implemented into spatstat, but only in connection to
estimation procedures (not simulation).

◮ However, there are many other packages which can be used for
simulating Gaussian fields...
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Overview of Cox process models

Cox process →
◮ LGCPs

◮ SNCPs →
◮ SNGCPs
◮ Neyman-Scott →

◮ Thomas process
◮ Matérn cluster process
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2.2 MARKOV POINT PROCESSES
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Densities for Poisson processes

◮ Recall that X1 is absolutely continuous w.r.t. X2 if
P(X2 ∈ F ) = 0 ⇒ P(X1 ∈ F ) = 0.

◮ 1. For any numbers ρ1 > 0 and ρ2 > 0, Poisson(Rd , ρ1) is absolutely
continuous w.r.t. Poisson(Rd , ρ2) if and only if ρ1 = ρ2.

2. Suppose ρ1(·) and ρ2(·) are intensity functions so that
µ1(S) and µ2(S) are finite, and ρ1(u) > 0 ⇒ ρ2(u) > 0.
Then Poisson(S , ρ2) has density

f (x) = exp(µ1(S)− µ2(S))
∏

u∈x

ρ2(u)

ρ1(u)

w.r.t. Poisson(S , ρ1).

◮ Example: for bounded S , Poisson(S , ρ) has density

f (x) = exp(|S | − µ(S))
∏

u∈x ρ(u)

w.r.t. standard (unit-rate) Poisson process Poisson(S , 1).
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Finite point processes specified by a density

◮ Assume S ⊂ R
d is bounded and f is a density for a point process X

on S w.r.t. to the unit rate Poisson process on S :

P(X ∈ F ) =
∞
∑

n=0

e−|S|

n!

∫

Sn

1[{x1, x2, . . . , xn} ∈ F ]

f ({x1, . . . , xn}) dx1 . . . dxn.

◮ Often specified by an unnormalized density:

h(x) = c f (x), x ⊂ S finite.

◮ Problem: calculation of the normalising constant

c =

∞
∑

n=0

e
−|S|

n!

∫

Sn

h({x1, . . . , xn})dx1 . . . dxn.
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Example: Strauss (1975) process

◮ Density: f (x) = 1
c
βn(x)γs(x), where β, γ ≥ 0, and s(x) is the number

of pairs of points within distance R .

◮ Kelly & Ripley (1976): Exists and is repulsive if γ ≤ 1; otherwise in
general (e.g. if S contains a ball) it does not exist.

S = [0, 1]× [0, 1], β = 100, γ = 0,R = 0.1.
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Stability conditions and existence

◮ Integrability (= existence): c < ∞ (c > 0 usually trivial).

◮ Let c∗ =
∫

S
K (u)du < ∞ for some fct. K : S → [0,∞).

◮ Local stability: h(x ∪ u) ≤ K (u)h(x) (where x ∪ u = x ∪ {u}).
◮ Ruelle stability: h(x) ≤ α

∏

u∈x K (u) for some α < ∞.

Proposition:

Local stability ⇒ Ruelle stability ⇒ integrability.
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Example: Multiscale process

◮ Interaction term:

si(x) =
∑

{u,v}⊆x

1[Ri−1 < ‖u − v‖ ≤ Ri ], i = 1, . . . , k ,

where 0 = R0 < R1 < R2 < · · · < Rk < ∞.

◮ Density:

f (x) ∝ βn(x)
k
∏

i=1

γ
si (x)
i

where β > 0 and each γi ≥ 0.

◮ Well-defined (locally stable) if
◮ all γi ≤ 1
◮ or if γ1 = 0 (hard core condition).
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Hereditary condition and Papangelou conditional intensity

◮ Hereditary density: f (or h) is hereditary if f (y) > 0 ⇒ f (x) > 0
whenever x ⊂ y.
(Any subset of an ’allowed’ point configuration is ’allowed’.)

◮ Papangelou conditional intensity:

λ(x, u) =
f (x ∪ u)

f (x)
=

h(x ∪ u)

h(x)

where a/0 = 0 for all a.
NB: does not depend on c !!

◮ Interpretation: λ(x, u)du is the probability of having a point in an
infinitesimal region around u given the rest of X is x.

◮ If f is hereditary: f ↔ λ.

◮ If X is a Poisson process with intensity ρ(u): λ(x, u) = ρ(u).

74 / 124



Attractive or repulsive point process

◮ Consider any finite point configurations x ⊆ y and any point u in S .

◮ If X is Poisson, then λ(x, u) = λ(y, u).

◮ X is attractive if
λ(x, u) ≤ λ(y, u).

◮ X is repulsive if
λ(x, u) ≥ λ(y, u).
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Pairwise interaction process

◮ A pairwise interaction density is of the form

f (x) ∝
∏

u∈x

ϕ(u)
∏

{u,v}⊆x

ϕ({u, v}), ϕ(·) ≥ 0.

◮ This is hereditary and

λ(x, u) = ϕ(u)
∏

v∈x

ϕ({u, v}).

◮ If ϕ({u, v}) ≤ 1, then X exists and is repulsive.

◮ If ϕ({u, v}) ≥ 1, then usually X does not exist.

◮ Range of interaction:

R = inf{r > 0 : for all {u, v} ⊂ S , ϕ({u, v}) = 1 if ‖u − v‖ > r},

i.e. ”the smallest r so that ϕ({u, v}) = 1 if distance between u and
v is larger than r”.
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Example: Multiscale process (continued)

Recall that for this process,

f (x) ∝ βn(x)
k
∏

i=1

γ
si (x)
i

where

si(x) =
∑

{u,v}⊆x

1[Ri−1 < ‖u − v‖ ≤ Ri ], i = 1, . . . , k ,

with β > 0, 0 = R0 < R1 < R2 < · · · < Rk < ∞, all γi ≥ 0, and either all
γi ≤ 1 or γ1 = 0.
This is a pairwise interaction process with ϕ(u) = β and

ϕ({u, v}) =
{

γi if Ri−1 < ‖u − v‖ ≤ Ri

1 if ‖u − v‖ > Rk
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Summary statistics, likelihoods and simulation

◮ Summary statistics are difficult to obtain, e.g. it can be proved that
ρ(u) = Eλ(X , u), but in general this mean value cannot be
calculated (except for the Poisson process).

◮ As we have specified the density, we can deal with likelihoods (more
later)!

◮ Likelihoods and simulation procedures usually require MCMC
methods – here the Papangelou conditional density is very useful for
constructing MCMC algorithms (more later)!
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Neighbour relations

◮ Neighbour relation: Let ∼ be a reflexive (u ∼ u) and symmetric
(u ∼ v ⇒ v ∼ u) relation on points u, v ∈ S .

◮ The neighbourhood of u ∈ S is

Nu = {v ∈ S : v ∼ u}.

◮ We will mainly consider the R-close neighbourhood:

u ∼ v iff ‖u − v‖ ≤ R .
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Markov point processes

◮ DEF: Local Markov property: λ(x, u) = h(x ∪ u)/h(x) depends only
on x through x ∩ Nu.

◮ DEF: Suppose that h(·) ≥ 0 is hereditary and satisfies the local
Markov property. Then h is Markov w.r.t. ∼.
If also h is integrable (w.r.t. the unit rate Poisson process on S)
then X ∼ h is called a Markov point process.

◮ Hammersley-Clifford theorem (Ripley & Kelly, 1977):
The following are equivalent.

1. h is Markov w.r.t. ∼.
2.

h(x) =
∏

y⊆x

ϕ(y)

where ϕ(y) = 1 whenever u 6∼ v for some u, v ∈ y.

◮ Then the Papangelou conditional intensity becomes

λ(x, u) =
∏

y⊆x∩Nu

ϕ(u ∪ y).
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Examples of Markov point processes

◮ Pairwise interaction process:

h(x) =
∏

u∈x

ϕ(u)
∏

{u,v}⊆x

ϕ({u, v}).

This is Markov when u ∼ v iff ϕ({u, v}) 6= 1.
(Clearly, ϕ(y) = 1 whenever n(y) > 2.)

◮ Hence the multiscale process (including the Strauss process) is
Markov.
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Examples of Markov point processes (cont.)

◮ Geyer’s triplet process (Geyer, 1999):

h(x) = βn(x)γs(x)δt(x),

where s(x) is the number of R-close pairs and t(x) is the number of
R-close triplets of points in x. Here,

◮ β > 0, γ ≥ 0, either δ ∈ [0, 1) or both δ = 1 and γ ≤ 1;
◮ ϕ(y) = 1 if n(y) > 3 or ‖u − v‖ > R for some u, v ∈ y.

◮ Area-interaction process (Widom & Rowlingson, 1970; Baddeley &
Van Lieshout, 1995):

h(x) = βn(x)γ−|U(x)|

where |U(x)| = | ∪u∈x b(u,R)| (area/volume of this union).
◮ Poisson if γ = 1; attractive if γ > 1; repulsive if 0 < γ < 1.
◮ Easily seen to be Markov, but ϕ(·) is complicated...
◮ Obviously ϕ(y) = 1 if ‖u − v‖ > 2R for some u, v ∈ y, so the range

of interaction is 2R.
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Spatial Markov property

◮ For B ⊆ S , define the neighbourhood
NB = {u ∈ S : u ∼ v for some v ∈ B}
and the boundary
∂B = NB \ B.

◮ Theorem: If A,B ⊂ S so that A ∩ NB = ∅, then XA and XB are
conditionally independent given XC where C = S \ (A ∪ B).

◮ Proof: follows from the Hammersley-Clifford theorem.
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Edge correction using the spatial Markov property

◮ Suppose we observe XW = x where W ⊂ S .

◮ Problem: density (likelihood) fW (x) = Ef (x∪YS\W ) unknown (here
Y ∼Poisson(S , 1)).

◮ Border method: let

W⊖R = {u ∈ W : b(u,R) ⊆ W }

and base inference on

fW⊖R
(x ∩W⊖R | x ∩ (W \W⊖R)) ∝

∏

∅6=y: y⊆x∩W⊖R



ϕ(y)
∏

z: ∅6=z⊆x∩(W\W⊖R )

ϕ(y ∪ z)





since conditional on X ∩ (W \W⊖R), we have that
X ∩W⊖R and X \W (the unobserved part of the process) are
independent.
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Inhomogeneous Markov processes

◮ First order inhomogeneity: ϕ(y) is non-constant for n(y) = 1, but
translation invariant for n(y) > 1.

◮ Example (inhomogeneous Strauss process):

h(x) =

(

∏

u∈x

β(u)

)

γs(x).

◮ Inhomogeneity can also be obtained by independent thinning of a
homogeneous Markov process.

◮ The thinned process is not Markov, but the spatial Markov property
still holds.
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Overview of Markov point processes

Markov/Gibbs process →
◮ Pairwise interaction process →

◮ Strauss process →
◮ (Gibbs) hard core process

◮ Multiscale process

◮ Geyer’s triplet process

◮ Area-interaction process

There are MANY other models for Markov point processes
– see M & Waagepetersen (2004) and the references therein.

Finite Markov/Gibbs processes can be extended to R
d , but the theory is

technical – see again M & Waagepetersen (2004) and the references
therein.
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3 SIMULATION AND INFERENCE PROCEDURES
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3.1 MARKOV CHAIN MONTE CARLO (MCMC) METHODS
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When do we need MCMC?

We already know how to simulate

◮ Poisson processes;

◮ Cox processes.

But what about (finite) Markov point processes?

◮ Then we consider a finite point process X with points in a bounded
set S ⊂ R

d and specified by a hereditary density f (x) ∝ h(x) or
equivalently by its Papangelou conditional intensity
λ(x, u) = h(x ∪ u)/h(x).

◮ For this we use MCMC methods... noting that n(X) is random.

(See M & Waagepetersen (2004) if we condition on n(X) = n.)
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Birth-death Metropolis-Hastings algorithm (Geyer & M,

1994)

Generate Markov chain Y0,Y1, . . .: For m = 0, 1, . . .,
given Ym = x, make either a birth proposal w.p. p(x)
or a death proposal w.p. 1− p(x);

◮ if birth: generate a new point V from a density qb(x, ·);
accept Ym+1 = x ∪ V w.p. min{1, rb(x,V );

◮ if death: select a point V ∈ x w.p. qd (x,V );
accept Ym+1 = x \ V w.p. min{1, rd(x,V );
(note: if Ym = ∅, then Ym+1 = ∅);

◮ else Ym+1 = x.

◮ Here rb and rd are so-called Hastings ratios:

rb(x,V ) =
λ(x,V )(1 − p(x ∪ V ))qd (x ∪ V ,V )

p(x)qb(x,V )

rd(x,V ) = 1/rb(x \ V ,V )

Convenient initial state: Y0 = ∅ or ∼Poisson process.
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Example: Birth-death simulation of a Strauss process

◮ Proposals distributions:

p(x) = 1/2, qd (x, v) =
1

n(x)
, qb(x, v) =

1

|S | .

◮ Hastings ratios:

rb(x, v) =
βγ

∑
u∈x 1[‖v−u‖≤R]|S |
n(x ∪ v)

,

rd (x, v) =
n(x)

βγ
∑

u∈x\v 1[‖v−u‖≤R]|S |
.

◮ What happens if we ignore that γ ≤ 1 is required for the Strauss
process to exist?
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Detailed balance condition

◮ Let ab = min{1, rb}, ad = min{1, rd} denote the acceptance
probabilities for a birth or a death.

◮ The Hastings ratios rb and rd are specified such that a detailed
balance condition is satisfied:

f (x)p(x)qb(x, v)ab(x, v) = f (x∪v)(1−p(x∪v))qd (x∪v , v)ad (x∪v , v)

◮ This implies reversibility and f is the equilibrium density!
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Ergodicity of birth-death chain

◮ Let E = {x ⊂ S : n(x) < ∞, f (x) > 0}.
◮ Suppose initial state Y0 ∈ E , p(∅) < 1, and for all x ∈ E with x 6= ∅,

there is a v ∈ x so that

(1− p(x))qd (x, v) > 0, f (x \ v)p(x \ v)qb(x \ v , v) > 0.

Then birth-death chain is aperiodic and irreducible.

◮ Example (Strauss process – continued): E = {x ⊂ S : n(x) < ∞}
and for all x ∈ E with x 6= ∅,

(1− p(x))qd (x, v) =
1

2n(x)
> 0,

f (x \ v)p(x \ v)qb(x \ v , v) =
1

2|S | f (x) > 0.

◮ Geometric ergodicity is implied by local stability
(Geyer & M, 1994; Geyer, 1999).
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MCMC in practice

◮ Looking at plots of realizations of Ym (for large m), it may be hard
to say whether the chain has converged approximately.

◮ Trace plots of various statistics can be useful.

◮ For example, in the case of the Strauss process,
n(Ym) and s(Ym) are obvious choices.

◮ Should comparing trace plots for Ym started at different Y0, e.g.
Y0 = ∅ or Y0 ∼Poisson(S , β) process (see next item).

◮ Local stability: if we have local stability, λ(x, u) ≤ K (u), then there
exists Y ∼Poisson(S ,K ) such that X ⊆ Y,
i.e. Y dominates X (Preston 1977).

◮ Spatstat contains the rmh function for simulating point patterns
using the Metropolis-Hastings algorithm. Have a look at some
code... (Rcode4Markov.R)
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Perfect simulation

◮ Perfect simulation means an algorithm so that the output is
following exactly the target density f (at least in theory, i.e. ignoring
the fact that a random number generator may not produce exactly
uniformly distributed numbers).

◮ There exists a perfect simulation algorithm for locally stable point
processes based on so-called dominating coupling from the past
(DCFTP) (Kendall & M, 2000; Berthelsen & M 2002, 2003).

◮ The DCFTP algorithm is implemented in Spatstat for the Strasuss
process as the rStrauss function... (Rcode4Markov.R)
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3.2 LIKELIHOOD AND MOMENT-BASED ESTIMATION
PROCEDURES
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Likelihood-based inference for point processes

◮ Consider a point process on a bounded region S and specified by
unnormalized density hθ(x), so

fθ(x) =
1

cθ
hθ(x).

◮ Problem: Usually cθ is unknown. Then log likelihood

l(θ) = log hθ(x)− log cθ

is also unknown.

◮ Both maximum likelihood inference and Bayesian inference need this
constant (it does not cancel out as it did for the birth-death
Metropolis-Hastings algorithm).
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Normalising constants and expectations

◮ If X ∼ fθ and Y ∼Poisson(S , 1), then

Eθ[k(X)] = E[k(Y)fθ(Y)] = E[k(Y)hθ(Y)]/cθ

for any non-negative (measurable) function k .

◮ Thus, for k = 1,

cθ = E [hθ(Y)] =

∞
∑

n=0

e−|S|

n!

∫

Sn

hθ({x1, . . . , xn})dx1 . . . dxn.

◮ In general impossible to calculate unless X is a Poisson process, i.e.
when

hθ({x1, . . . , xn}) =
n
∏

i=1

ρ(xi )

and so

cθ = exp

(
∫

S

ρ(u)du − |S |
)

.
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Importance sampling

◮ cθ/cθ0 can be approximated using importance sampling, where θ0 is
a fixed reference parameter:

l(θ) ≡ log hθ(x)− log
cθ
cθ0

.

◮ Importance sampling formula: If fθ0(x) > 0 whenever fθ(x) > 0, then

cθ
cθ0

= Eθ0

[

hθ(X)

hθ0(X)

]

.

◮ Hence
cθ
cθ0

≈ 1

n

n
∑

i=1

hθ(Xi )

hθ0(Xi )

where X1, . . . ,Xn is a sample from fθ0 (ideally i.i.d. simulations, but
simulations taken after burn-in and at regular spacing (or no spacing
at all!) in MCMC will do just fine).
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Importance sampling formula
◮ General importance sampling formula:

Eθ [k(X)] = Eθ0

[

k(X)
hθ(X)

hθ0(X)

]/[

cθ
cθ0

]

for any non-negative (measurable) function k .

◮ Examples: k = 1; k(x) = n(x) or k(x) = s(x)
(the sufficient statistics of a Strauss process).

◮ Using a sample X1, . . . ,Xn from fθ0 , then Eθ [k(X)] can be
approximated by

1
n

∑n

m=1 k(Xm)
hθ(Xm)
hθ0 (Xm)

1
n

∑n

m=1
hθ(Xm)
hθ0 (Xm)

=

n
∑

m=1

k(Xm)wθ,θ0,n(Xm)

where we have importance weights (probabilities)

wθ,θ0,n(Xm) =
hθ(Xm)/hθ0(Xm)

∑n

i=1 hθ(Xi )/hθ0(Xi )
, m = 1, . . . , n.
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Importance sampling in practice

◮ Although

cθ
cθ0

≈ 1

n

n
∑

m=1

hθ(Xm)

hθ0(Xm)

is an unbiased estimate of cθ
cθ0

, it may be a very bad estimate if hθ

and hθ0 are not close: as most Xm will be located where hθ0 is high,

then hθ(Xm)
hθ0 (Xm)

may be typically low, and so most terms will count very

little in the sum, while a few may count a lot!

◮ Typically this is a problem when θ and θ0 are far away from each
other, so we need a way of making a path between them (path
sampling or bridge sampling; see M & Waagepetersen, 2004).
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Example: Exponential families

◮ Consider an exponential family (on canonical) form,

hθ(x) = exp(t(x)θ⊤).

◮ Example: The Strauss process (with fixed R) has

t(x) = (n(x), s(x)), θ = (log β, log γ).

◮ Ratio of normalizing constants used in importance sampling:

cθ
cθ0

= Eθ0

[

exp(t(X)(θ − θ0)
⊤)
]

.

◮ If θ − θ0 is ‘large’, exp(t(X)(θ − θ0)
⊤) has very large variance in

many cases, so small steps needed for finding the MLE.
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Maximisation of likelihood

◮ Score and observed information in exp. family case:

u(θ) = t(x)− Eθ [t(X)] , j(θ) = Varθ [t(X)] ,

can be approximated by importance sampling.

◮ Since j is a covariance matrix, it is positive semi-definite, and thus
the log-likelihood is concave. In fact, also the approximate
log-likelihood is concave.

◮ To find the MLE we need to solve u(θ) = 0.

◮ Newton-Raphson iterations:

θm+1 = θm + u(θm)j(θm)
−1

◮ Approximate MLE: Use the importance sampling approximation of
score and observed information in the Newton-Raphson iterations.
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Missing data

◮ With a slight abuse of notation, assume fθ is the joint density of
point processes X and Y with respect to independent Poisson
processes X1 and X2 but we only observed X = x.

◮ Typically, (X,Y) corresponds to (XW ,XS\W ), where W ⊆ S ; then
X1 and X2 are defined on W and S \W , resp.

◮ The likelihood is given by

fθ(x) = E [fθ(x,X2)] = Eθ [hθ(x,X2)] /cθ.

◮ ‘Missing data problem’: Typically, fθ(x, y) or at least or hθ(x, y) has
a simple expression but fθ(x) does not.

◮ Note fθ(x) is normalizing constant of a conditional density:

fθ(y|x) ∝ fθ(x, y) = hθ(x, y)/cθ.

Thus importance sampling for estimation of the normalizing
constants cθ and fθ(x) applies.
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Missing data and importance sampling

◮ Recall previous importance sampling formula:

cθ
cθ0

= Eθ0

[

hθ(X)

hθ0(X)

]

◮ Adapting to the missing data case:

fθ(x)

fθ0(x)
= Eθ0

[

fθ(X,Y)

fθ0(X,Y)

∣

∣

∣

∣

X = x

]

or
fθ(x)

fθ0(x)
= Eθ0

[

hθ(X,Y)

hθ0(X,Y)

∣

∣

∣

∣

X = x

]/

cθ
cθ0

.

◮ We can then use Monte Carlo approximations to approximate this
expectation but w.r.t. the conditional distribution of Y given X = x

and θ = θ0; just as for the normalising constants cθ/cθ0 .
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Example: Norwegian spruces
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W = [0, 56]× [0, 38]. Suppose R̃ = 10 ≥ the interaction radius. Should
we take S = W (i.e. no missing data) or e.g. S = [−10, 66]× [−10, 48]
(missing data) or something else, and which kind of model/likelihood
should we consider?
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Likelihood-functions for Markov point processes

Consider 5 types of models/likelihoods corresponding to different
situations:

1. l(θ) (the simple likelihood – no missing data):
S = W = [0, 56]× [0, 38].

2. lmis(θ) (the missing data likelihood): W = [0, 56]× [0, 38] and
S = [−10, 66]× [−10, 48].

3. l̃mis(θ) (the torodial missing data likelihood):
S = [−10, 66]× [−10, 48] is wrapped on a torus and
W = [0, 56]× [0, 38].

4. l̃(θ) (the torodial likelihood – no missing data):
S = W = [0, 56]× [0, 38] is wrapped on a torus.

5. l⊖R̃(θ) (the conditional likelihood – based on the border method for
missing data):
S = [0, 56]× [0, 38], W = S⊖R̃ = [10, 46]× [10, 28], and the
likelihood is based on XW |XS\W .
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Table 9.1 in M & Waagepetersen (2004)

◮ Ignoring the radii, we fit a multiscale process with parameters β and
0 < γi ≤ 1, Ri = 1.1× i , i = 1, . . . , 4.

◮ Parameter-estimates with different likelihood functions:
logβ log γ1 log γ2 log γ3 log γ4

l(θ) −1.78 −3.24 −1.03 −0.27 0.00
lmis(θ) −0.84 −3.58 −1.38 −0.55 −0.12

l̃mis(θ) −0.86 −3.63 −1.35 −0.55 −0.13

l̃(θ) −0.95 −3.53 −1.34 −0.55 −0.11
l⊖R̃(θ) −0.64 −3.26 −1.46 −0.64 −0.14

◮ -2 log likelihood ratio test for Strauss model (γ1 = . . . = γ4) based
on toroidal missing data likelihood: 47 (path sampling).

◮ Wald test for Strauss process: 29.
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Briefly about Bayesian statistics

Given a realization XW = xW of a spatial point process.

◮ Poisson point processes: likelihood term is tractable, so rather
straightforward (using MCMC or possibly even simpler methods).

◮ Cox processes: Include the unobserved random intensity into the
posterior...

◮ For a SNCP, as the centre process C is not observed, include this
into the posterior. MCMC: Alternate between updating the unknown
parameters and C (using the MH birth-death algorithm in the latter
case).

◮ For a LGCP, as the Gaussian process on the observation window,
ZW , is not observed, include this (approximated on a grid) into the
posterior and use INLA (Rue, Martino & Chopin, 2009), i.e. no
MCMC!

◮ Markov point processes: Here the problem is the intractable
normalizing constant of the likelihood which also enters in the
posterior. Use the auxiliary variable method (M, Pettitt, Berthelsen
& Reeves, 2006) – based on perfect simulations!
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Alternative to likelihood: pseudo likelihood (Besag, 1975,

1977)

◮ Maximum likelihood estimation can be done approximatively for
most Markov point processes.

◮ But the normalising constant can be time-consuming to
approximate, since it needs importance (or path or bridge) sampling
based on long MCMC runs.

◮ An alternative to the likelihood function is the pseudo likelihood
function, which does not depend on unknown normalising constants.
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Pseudo likelihood function

Definition of pseudo likelihood function PLA(θ; x) on a region A ⊆ S
(Besag, 1977; Jensen & M, 1991):

◮ For i = 1, 2, . . ., let {Bij}j=1,...,mi
be a partition of A into mi cells,

where partitions become finer as i increases.

◮ Then

PLA(θ; x) = exp(|A|) lim
i→∞

mi
∏

j=1

fθ,A(xBij
|xS\Bij

).

◮ Fact: If X ∼ fθ is Ruelle stable, then

PLA(θ; x) = exp

(

−
∫

A

λθ(x, u)du

)

∏

u∈xA

λθ(x\u, u).

◮ Note that the normalising constants have disappeared in the last
expression.
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Maximization of pseudo likelihood function

◮ MPLE is found by solving (d/dθ) logPLA(θ; x) = 0, i.e.

∫

A

d

dθ
λθ(x, u)du =

∑

u∈xA

d

dθ
logλθ(x\u, u)

◮ Exponential family case:

∫

A

t(x, u) exp(θ · t(x, u))du =
∑

u∈xA

t(x\u, u),

where t(x, u) = t(x ∪ u)− t(x).
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Some facts about MPLE

◮ For Poisson processes, the pseudo likelihood agrees with the
likelihood.

◮ For weak interaction, PL ≈ L.

◮ For non-Poisson, the MPLE usually needs to be found numerically,
but this is much easier/faster than for MCMC-MLE.

◮ In the exp. fam. case, the pseudo likelihood function is log concave,
and the spatstat package contains fast estimation procedures for
finding the MPLE.

◮ Edge effects are handled as for the usual likelihood (e.g. using the
border method).

◮ Consistency: Jensen & M (1991).

◮ Asymptotic normality: Jensen & Künsch (1994).
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Minimum contrast estimation

◮ The likelihood function or Papangelou conditional intensity is usually
not known on closed form for Cox processes, so here we need
something else than MLE or MPLE – e.g. minimum contrast
estimation based on moments or summary statistics...

◮ Basic idea: choose parameters such that a selected theoretical
summary statistic T (r) is as close as possible to its empirical
estimate T̂ (r).

◮ “As close as possible” means that we find the parameters which
minimise some “distance” function d(T̂ ,T ), e.g.

d(T̂ ,T ) =

∫ a2

a1

(

T̂ (r)− T (r)
)2

dr

for some 0 ≤ a1 < a2.
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Example of minimum contrast estimation

◮ Pair correlation function for Thomas process:

g(r) = 1 + exp(−r2/(4ω2))/(4πω2κ).

◮ Minimum contrast using g -function:

∫ a2

a1

(

ĝ(r)− 1− exp(−r2/(4ω2))/(4πω2κ)
)2

dr

(here we could use an edge-corrected kernel estimate ĝ , see M &
Waagepetersen (2004)).

◮ Numerical methods often required for calculating and minimising
integral. Note that for fixed ω2, the contrast is a second order
polynomial w.r.t. κ.

◮ Note that Thomas process has parameters (κ, α, ω2) – α is not in
the pair correlation function, so other methods are needed for
estimating this. Use e.g. that En(XW ) = ακ|W |.
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Minimum contrast estimation

◮ In principle any known summary statistic can be used (e.g. K (r),
g(r), F (r)), or any function of these (e.g. K (r)2).

◮ Choosing a summary statistic:
◮ It should be easy to calculate.
◮ It should reflect important aspects of data.
◮ It should be well-defined (e.g. we defined F only for stationary

processes).

◮ If we use a summary statistic for fitting a model, we should not use
the same one for model checking!
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R and spatstat

Consider some examples of statistical analyses in R using maximum
pseudo likelihood estimation and minimum contrast estimation...
(Rcode5Estimation.R)
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3.3 OVERVIEW AND CONCLUDING REMARKS
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Statistical analysis of a point pattern

A rough skeleton for doing a statistical analysis of a point pattern using
the theory from this course:

1. Preliminary analysis

2. Model building

3. Parameter estimation (and testing)

4. Model checking

5. Conclusions

Note: the following slides provide some inspiration – there is no
“standard way” of analysing a point pattern.
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Preliminary analysis

◮ What do you know about the data before the analysis?

◮ Plot the data!

◮ Is the data clustered, regular, Poisson-like or something else? Visual
inspection and/or estimation of summary statistics (g ,K , L,F ,G , J).

◮ Homogeneous or inhomogeneous? Visual inspection and/or
estimation of ρ.

◮ Does the data have any features that require special attention (e.g.
covariates)?
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Model

◮ Choosing a model:
◮ Are there scientifically interesting questions that should guide your

modelling?
◮ A mechanistic model (e.g. a Neyman-Scott process) – choice based

on underlying mechanics
◮ A statistical model (e.g. a LGCP) – choice based on preliminary

analysis

◮ Model classes:
◮ Poisson process – specify intensity function
◮ Cox process – specify random intensity function: For a cluster

process, specify cluster construction; for a LGCP, specify GRF.
◮ Markov process – specify density/Papangelou conditional intensity

◮ If simulation is easy, , before going on to the much more time
consuming task of estimation, simulate realizations for various
parameter values to check whether the model has any resemblance
to the data.
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Parameter estimation

◮ Maximum likelihood estimation
◮ Analytical – simple Poisson process models
◮ Numerical (Newton-Raphson) – complicated Poisson process models

and Markov point process models
◮ Profile likelihoods for difficult parameters (e.g. the interaction radius

in the Strauss process)

◮ Maximum pseudo likelihood estimation
◮ Numerical (but no normalizing constants) – apply for Markov point

processes

◮ Bayesian inference
◮ MCMC-based – missing data approach for Cox process models and

cluster process models – more complicated for Markov point
processes...

◮ Minimum contrast estimation
◮ Cox processes
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Model checking

◮ Based on simulation:
◮ Using definition directly (Poisson; Cox)
◮ MCMC-based (Markov)

◮ Compare simulations and data visually

◮ Compare summary statistics for simulations and data

◮ If something does not fit:
◮ Does the model checking tell how to improve the model?
◮ Don’t expect everything to work perfectly!
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Conclusions

◮ Derive conclusion from the model

◮ Does the estimated parameters tell something about the data?

◮ Does the fact the model fits tell anything?

◮ If it does not fit, does this tell anything?
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